Telegram Group & Telegram Channel
Как работает Dropout?

Dropout - это метод регуляризации нейронных сетей, который помогает предотвратить переобучение. Он работает следующим образом:
1. Исключение нейронов: В процессе обучения нейронной сети, на каждом шаге обучения, dropout случайным образом "отключает" (или исключает) некоторые нейроны сети. Это означает, что в процессе прямого и обратного распространения ошибки, эти нейроны не участвуют.
2. Параметр "вероятность отключения": Dropout вводит параметр "вероятность отключения" (обычно обозначается как p), который указывает, с какой вероятностью каждый нейрон будет исключен на каждом обновлении (проходе) через сеть.
3. Устранение переобучения: Dropout помогает бороться с переобучением, потому что он заставляет сеть стать более устойчивой и генерализировать лучше на новых данных. Из-за случайного отключения нейронов сеть вынуждена распределять вычислительные ресурсы более эффективно.
4. Использование во время тестирования: Важно помнить, что dropout используется только во время обучения сети. Когда сеть применяется для создания предсказаний на новых данных, dropout выключается, и все нейроны используются.
👍9



tg-me.com/ds_interview_lib/42
Create:
Last Update:

Как работает Dropout?

Dropout - это метод регуляризации нейронных сетей, который помогает предотвратить переобучение. Он работает следующим образом:
1. Исключение нейронов: В процессе обучения нейронной сети, на каждом шаге обучения, dropout случайным образом "отключает" (или исключает) некоторые нейроны сети. Это означает, что в процессе прямого и обратного распространения ошибки, эти нейроны не участвуют.
2. Параметр "вероятность отключения": Dropout вводит параметр "вероятность отключения" (обычно обозначается как p), который указывает, с какой вероятностью каждый нейрон будет исключен на каждом обновлении (проходе) через сеть.
3. Устранение переобучения: Dropout помогает бороться с переобучением, потому что он заставляет сеть стать более устойчивой и генерализировать лучше на новых данных. Из-за случайного отключения нейронов сеть вынуждена распределять вычислительные ресурсы более эффективно.
4. Использование во время тестирования: Важно помнить, что dropout используется только во время обучения сети. Когда сеть применяется для создания предсказаний на новых данных, dropout выключается, и все нейроны используются.

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/42

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Telegram today rolling out an update which brings with it several new features.The update also adds interactive emoji. When you send one of the select animated emoji in chat, you can now tap on it to initiate a full screen animation. The update also adds interactive emoji. When you send one of the select animated emoji in chat, you can now tap on it to initiate a full screen animation. This is then visible to you or anyone else who's also present in chat at the moment. The animations are also accompanied by vibrations. This is then visible to you or anyone else who's also present in chat at the moment. The animations are also accompanied by vibrations.

Tata Power whose core business is to generate, transmit and distribute electricity has made no money to investors in the last one decade. That is a big blunder considering it is one of the largest power generation companies in the country. One of the reasons is the company's huge debt levels which stood at ₹43,559 crore at the end of March 2021 compared to the company’s market capitalisation of ₹44,447 crore.

Библиотека собеса по Data Science | вопросы с собеседований from tr


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA